Micaela Schaefer High Voltage
DOWNLOAD ->->->-> https://geags.com/2thjBZ
Therefore, we bring the experimental evidence to the theoretical work of J. Weaver and colleagues31,32 who postulated that µsPEF can permeabilize cell organelles even though organelles radius is lower than cell radius and even if internal vesicles are shielded by the PM before the pulses delivery. Indeed, since the plasma membrane is permeabilized within the first microseconds of the electric pulse, the externally applied electric field can then penetrate inside the cells, modify the transmembrane voltage of organelles and even permeabilized them, provided that the electric field applied is high enough.
A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.
In this study, levels of extremely low-frequency electric and magnetic fields originated from overhead power lines were investigated in the outdoor environment in Ramallah city, Palestine. Spot measurements were applied to record fields intensities over 6-min period. The Spectrum Analyzer NF-5035 was used to perform measurements at 1 m above ground level and directly underneath 40 randomly selected power lines distributed fairly within the city. Levels of electric fields varied depending on the line's category (power line, transformer or distributor), a minimum mean electric field of 3.9 V/m was found under a distributor line, and a maximum of 769.4 V/m under a high-voltage power line (66 kV). However, results of electric fields showed a log-normal distribution with the geometric mean and the geometric standard deviation of 35.9 and 2.8 V/m, respectively. Magnetic fields measured at power lines, on contrast, were not log-normally distributed; the minimum and maximum mean magnetic fields under power lines were 0.89 and 3.5 μT, respectively. As a result, none of the measured fields exceeded the ICNIRP's guidelines recommended for general public exposures to extremely low-frequency fields.
Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of 300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.
To maximize the availability and usefulness of a small magnetic field exposure laboratory, we designed a magnetic field exposure system that has been used to test human subjects, caged or confined animals, and cell cultures. The magnetic field exposure system consists of three orthogonal pairs of coils 2 m square x 1 m separation, 1.751 m x 0.875 m separation, and 1.5 m x 0.75 m separation. Each coil consisted of ten turns of insulated 8 gauge stranded copper conductor. Each of the pairs were driven by a constant-current amplifier via digital to analog (D/A) converter. A 9 pole zero-gain active Bessel low-pass filter (1 kHz corner frequency) before the amplifier input attenuated the expected high frequencies generated by the D/A conversion. The magnetic field was monitored with a 3D fluxgate magnetometer (0-3 kHz, +/- 1 mT) through an analog to digital converter. Behavioral monitoring utilized two monochrome video cameras (viewing the coil center vertically and horizontally), both of which could be video recorded and real-time digitally Moving Picture Experts Group (MPEG) encoded to CD-ROM. Human postural sway (standing balance) was monitored with a 3D forceplate mounted on the floor, connected to an analog to digital converter. Lighting was provided by 12 offset overhead dimmable fluorescent track lights and monitored using a digitally connected spectroradiometer. The dc resistance, inductance of each coil pair connected in series were 1.5 m coil (0.27 Omega, 1.2 mH), 1.75 m coil (0.32 Omega, 1.4 mH), and 2 m coil (0.38 Omega, 1.6 mH). The frequency response of the 1.5 m coil set was 500 Hz at +/- 463 microT, 1 kHz at +/- 232 microT, 150 micros rise time from -200 microT(pk) to + 200 microT(pk) (square wave) and is limited by the maximum voltage ( +/- 146 V) of the amplifier (Bessel filter bypassed). Copyright 2001 Wiley-Liss, Inc.
Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is 153554b96e